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Abstract

Over the past few years, the software engineering (SE) community has widely

employed deep learning (DL) techniques in many source code processing tasks. Simi-

lar to other domains like computer vision and natural language processing (NLP), the

state-of-the-art DL techniques for source code processing can still suffer from adver-

sarial vulnerability, where minor code perturbations can mislead a DL model's infer-

ence. Efficiently detecting such vulnerability to expose the risks at an early stage is

an essential step and of great importance for further enhancement. This paper pro-

poses a novel black-box effective and high-quality adversarial attack method, namely

CodeBERT-Attack (CBA), based on the powerful large pre-trained model

(i.e., CodeBERT) for DL models of source code processing. CBA locates the vulnera-

ble positions through masking and leverages the power of CodeBERT to generate

textual preserving perturbations. We turn CodeBERT against DL models and further

fine-tuned CodeBERT models for specific downstream tasks, and successfully mis-

lead these victim models to erroneous outputs. In addition, taking the power of

CodeBERT, CBA is capable of effectively generating adversarial examples that are

less perceptible to programmers. Our in-depth evaluation on two typical source code

classification tasks (i.e., functionality classification and code clone detection) against

the most widely adopted LSTM and the powerful fine-tuned CodeBERT models dem-

onstrate the advantages of our proposed technique in terms of both effectiveness

and efficiency. Furthermore, our results also show (1) that pre-training may help

CodeBERT gain resilience against perturbations further, and (2) certain pre-training

tasks may be beneficial for adversarial robustness.

K E YWORD S
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1 | INTRODUCTION

Over the past years, deep learning (DL) has made great progress and has achieved state-of-the-art performance in multiple application domains,

such as image processing, natural language processing (NLP), medical diagnose, and so on. In the software engineering (SE) community, we have

also been witnessing an increasing trend of leveraging DL techniques for various source code processing tasks. Up to the present, DL models have

shown strong capability in achieving state-of-the-art performance for many tasks of source code processing, including functionality

classification,1,2 code clone detection,3–5 method naming,6,7 code completion8–10 and code summarization.11–13 Some of these techniques have
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further been developed as applications to increase software development productivity in industry, such as DL-based automated code completion

toolkit IntelliCode.*14

Emerging from representation models, the large pre-trained models have demonstrated great potential in the natural language processing

(NLP) community and is later introduced to solve SE tasks. The pre-trained models, such as BERT,15 RoBERTa,16 and GPT series,17–19 are very

large models unsupervisedly trained upon million-level to even trillion-level corpus and provides the basis to achieve state-of-the-art performance

for various downstream tasks after fine-tuning. Inspired by the great success of pre-trained models in NLP, CodeBERT20 and later

GraphCodeBERT21 were proposed for source code processing. Both models are rather complex with 100 million-level parameter size, and are

trained upon the CodeSearchNet dataset,22 consisting of more than 8.5 million pieces of code data. So far, CodeBERT obtains state-of-the-art

performance in tasks from the recently proposed CodeXGLUE benchmark,†23 such as natural language code search22 and code defect

detection.24

However, the current state-of-the-art DL models still suffer from adversarial vulnerability, where minor perturbations on the inputs can mis-

lead the model's decision. Recently, such non-robust issues of DL models are also reported in the context of source code processing, for example,

when some source code identifiers are substituted, the DL classifiers would fail to produce a consistent prediction.25 While verifying how robust

a single DL model can be is essential for further enhancement, the adversarial robustness problem for pre-trained models, whose parameter size

and corpus size for pre-training are gigantic, and its potential downstream task models, are still largely untouched so far. It is still unclear to what

extent state-of-the-art pre-training models for SE tasks are capable to resist adversarial examples.

The adversarial attack, as the process of generating adversarial examples, is a straight-forward approach to verify the robustness of DL

models. It probabilistically produces a lower bound of risks (at what probability the model would fail) and an upper bound of robustness (at what

probability the model stays robust). A stronger attack will often produce a tighter bound and estimation. Note that DL models embedded in third-

party libraries and products are often black-boxes, where only the final outputs of the model are available due to security and privacy constraints.

For risk assessment before usage, an effective and efficient black-box adversarial attack approach is of great importance.

In the early attempts to investigate DL vulnerability for source code processing, Metropolis–Hastings modifier (MHM) attack25 is proposed,

which carries out iterative random identifier substitution based on the Metropolis–Hastings algorithm26–28 to generate perturbations. It is able to

produce adversarial examples given sufficient budget (time, computational resources, model invocation numbers, etc.), but MHM is not effective

and efficient, and the quality of generated examples is also relatively low. All these three drawbacks are caused by the simple searching strategy

within the approach. In particular, MHM randomly chooses the identifier to be substituted in a simple way, without searching for the most vulner-

able identifier, and randomly chooses the new identifier to substitute to, without considering the quality of the perturbed code.

To address these limitations for more effective and high-quality adversarial attacks, in this paper, we start from a new perspective and take

advantage of CodeBERT when performing adversarial perturbations, resulting in a novel black-box adversarial attack for source code processing,

namely CodeBERT-Attack (CBA). CBA performs identifier substitution attack iteratively. During each iteration, CBA first locates the vulnerable

identifiers in the code by masked classification, which is similar to masked language modeling in CodeBERT. Then, CBA utilizes CodeBERT to gen-

erate new perturbed identifier names for the vulnerable identifiers, and at last, CBA probes the victim model with the perturbed examples and

selects the one with the lowest predictive probability on the ground-truth label. The two major spotlights are as follows: (1) CBA searches and

locates the vulnerabilities, and perform perturbations only upon these positions, and (2) CBA generates identifier substitutions employing

CodeBERT, which is likely to follow the programming language distribution.

To demonstrate the usefulness of our proposed CBA, we perform an in-depth evaluation on two typical classification tasks (i.e., functionality

classification and code clone detection), containing about 2 million lines of code, against the most widely adopted LSTM and the powerful fine-

tuned CodeBERT, in black-box scenario. The results show that (1) CBA generates adversarial examples effectively, which on average reduces the

performance of DL models by 31.7%, and in particular, reduces the accuracy of LSTM in OJ from 95.3% to 45.2%; (2) CBA generates adversarial

examples efficiently, as the attack success rate converges quickly, outperforming MHM baseline; (3) CBA is capable of carrying out successful

adversarial attacks against large pre-trained models, as CBA on average reduces the performance of CodeBERT by 17.5%. To the best of our

knowledge, this paper is the very first to analyze the adversarial robustness of pre-trained models in the context of source code processing. Our

analysis further demonstrates that (1) pre-training may help the model gain high performance as well as adversarial robustness, as the attack suc-

cess rate against CodeBERT on average is lower than LSTM by 58.5%; (2) certain pre-training tasks may enhance the robustness against certain

types of adversarial perturbations, as the attack success rate against CodeBERT pre-trained with replaced token detection (RTD, a pre-training

task) is lower than CodeBERT pre-trained without RTD by 54.4% on average.

The contributions of this paper are summarized as follows:

• We propose a novel black-box adversarial attack method for source code processing, equipped with the powerful pre-trained CodeBERT,

namely CBA. Currently, the project is available through the shared link on GitFront.‡

• We demonstrate the capability, effectiveness, and efficiency of CBA, against existing state-of-the-art MHM adversarial attack.

• We carry out an adversarial attack against CodeBERT, revealing the non-robust issue of the pre-trained model for source code processing.

Besides, we also analyze the robustness enhancement that can be achieved by different pre-training tasks.
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2 | RELATED WORK

In this section, we discuss the most relevant works to this paper, including DL for source code processing tasks (Section 2.1), pre-trained models

(Section 2.2), and adversarial attack approaches (Section 2.3).

2.1 | DL for source code processing

By far, quite a lot of progress has been made in source code processing by adopting DL techniques in SE community, which can be roughly cate-

gorized as classification and generation. In this subsection, we only introduce the most relevant work, and more comprehensive progress along

this direction can be referred to the recent survey about big code.29

The DL models for classification tasks make classification predictions based on the vectorized representation of the code. Mou et al1 and later

Zhang et al2 propose TBCNN and ASTNN, respectively, for functionality classification. Wei et al3 propose CDLH for code clone detection. Later,

the results are improved by PACE4 and FA-AST.5 Weng et al30 and Pradel et al31 propose MatchGNet and DeepBugs, respectively, for bug or mal-

ware detection.

The DL models for generation tasks take code as input and output the results in sequences, for example, code token sequences, comment

texts, methods names, and so on. Allamanis et al6 propose convolutional attention networks for method naming, and later the results are

improved by Code2Vec.7 Li et al8 propose pointer mixture networks for automated code completion, which is later exceeded by multi-task-learn-

ing-based models.9,10 Hellendoorn et al32 propose DeepTyper for automated type inference. Hu et al11 propose DeepCom for automated code

summarization. The performance is further improved by TL-CodeSum12 and Code2Seq.13

Classification is the basis of generation tasks that can be regarded as a Markov chain of classification. At each generative step that depends

on the previous steps, the model selects a token or a word to generate in the manner of classification. In this paper, as an earlier exploratory step,

we mostly focus on DL source code classifiers, that is, functionality classification and code clone detection, and our proposed method can general-

ize to the generation tasks as well.

2.2 | Pre-trained model

The large pre-trained models have demonstrated their unprecedented advantage upon almost every NLP task in the last few years. The pre-

trained language models are able to learn contextualized representations of texts by training on a large amount of data, which can then be fine-

tuned for specific downstream tasks without training from scratch. Vaswani et al33 first proposed the transformer architecture with the multi-

head attention mechanism, which becomes widely adopted by the pre-trained models. Emerging from the representation model, Peters et al34

propose ELMo for context-aware word representation. Devlin et al15 propose BERT for universal bi-directional natural language modeling that

predicts a word given the surrounding context. Later, Liu et al16 propose RoBERTa for robust enhancement of BERT. The GPT series17–19 are pro-

posed for universal uni-directional natural language modeling, which predicts a word given the prefix sequence. All of the above models have

million-level to billion-level parameter size, and are trained on extremely large corpus. In addition, the most recently proposed Switch Transformer

model35 has the parameter size at trillion-level, and is trained upon over 100 languages.

Motivated by the huge success of pre-trained models in NLP, SE researchers have also attempted to introduce the pre-training technique into

source code processing. Liu et al10 propose CugLM, incorporating uni- and bi-directional language modeling for pre-training. Karampatsis et al36

propose SCELMo, adopting the ELMo framework to pre-train contextual embeddings for source code. Feng et al20 propose CodeBERT, which is

bimodally trained with both natural language and programming language. Guo et al21 propose GraphCodeBERT, leveraging DFG of code for pro-

gramming language modeling. Svyatkovskiy et al14 propose GPT-C, which is a variant of GPT-218 trained from scratch on source code corpus. In

this paper, we incorporate CodeBERT into our proposed technique, and also employ the fine-tuned CodeBERT as one of our victim models.

2.3 | Adversarial attack

The adversarial attack that generates adversarial examples to uncover the vulnerability of DL models draws much more attention in the past sev-

eral years. Szegedy et al37 first discover adversarial examples in image classification tasks. Later, Goodfellow et al.,38 Kurakin et al,39 and Papernot

et al40 propose FGSM, BIM and JSMA, respectively, which are effective and efficient adversarial attack approaches for image processing. Com-

pared with the image task, the adversarial attack of NLP tasks is often more difficult, mostly because that the sentence space is usually discrete,

and the similarity of sentences is also relatively hard to measure. Alzantot et al41 propose GeneticAttack, leveraging genetic algorithm for black-

box attack. Ebrahimi et al42 propose HotFlip, which performs char-level substitution for white-box attack. Zhang et al43 propose MHA, perturbing
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words through substitution, insertion, and deletion for both white- and black-box attack. Li et al44 propose BERT-Attack, which turns BERT

against its fine-tuned models in the manner of black-box attack. Zang et al45 propose SememePSO, based on the sememe knowledge base for

black-box word substitution.

Besides image processing and NLP domain, researchers also explore adversarial attack for source code processing tasks. The aforementioned

challenges in adversarial attack for NLP is even elevated in code space, because programming languages have much more strict lexical, syntactical,

and grammatical constraints that an adversarial example must follow. Zhang et al25 first propose MHM for black-box adversarial attack for source

code processing, which iteratively performs random renaming of identifiers and leverages reject sampling in the manner of Metropolis–Hastings

(M-H) approach.26–28 Yefet et al46 later propose DAMP for white-box attack, which substitutes identifiers and inserts dead code statements

according to the gradient guidance. Applis et al47 propose LAMPION for the black-box setting, which carries out heuristically defined metamor-

phic transformations as the perturbation. Srikant et al48 define and propose optimized obfuscations for white-box attack. More recently, Yang

et al49 propose ALERT, for natural black-box attack, which leverages the pre-trained model to produce identifier substitutions. ALERT constraints

the pre-trained model by embedding cosine distance to guarantee the naturalness and similarity, which is strong and is likely to fail; therefore,

ALERT adopts the genetic algorithm as the back-up perturbation. Similar to our proposed CBA, ALERT utilizes pre-trained model for perturbation

generation, the attack procedure is different. We regard ALERT as a parallel work and it is quite a good mutual confirmation and complement with

out research. Zhang et al50 propose a white-box attack approach similar to DAMP, and further integrate it into the robustness detection, estima-

tion and enhancement framework, named CARROT. In this paper, we employ MHM as the baseline for comparison, as MHM is the currently one

of the state-of-the-art black-box adversarial attack approach for source code processing.

Besides the adversarial attack approaches mentioned above, the robustness issue of the DL models, especially the pre-trained models, is also

a new research direction. Previous work shows the pre-trained language model such BERT may not be robust adversarial attack for NLP

tasks.44,45 In the field of source code processing, empirical studies47,51 also confirms similar conclusions that pre-trained models such as

CodeBERT may not be robust against perturbations such as identifier renaming. As the early stage research, we also make an early attempt to

investigate the adversarial vulnerability of the pre-trained models in the context of source code processing.

3 | PROBLEM DEFINITION AND FORMULATION

As the basis of our proposed technique, in this section, we first provide relevant definitions, formalize the concept of source code classification

(Section 3.1) and black-box adversarial attack (Section 3.2). Then, we give an overview introduction to the large pre-trained models, especially

CodeBERT (Section 3.3). Table 1 summarizes the notations and symbols used in this paper.

3.1 | Source code classification

As discussed earlier, we mostly focus on source code classification tasks in this paper, because they are one of the most basic and typical tasks

among all DL applications. For example, source code tasks such as malware detection30 and clone detection2–5 are classification tasks. Other

sequential generation tasks, such as code completion,8–10 code summary,11–13 and method naming,6,7 are essentially a Markov chain of classifica-

tion, that is, the word or token generated at a certain step is dependent on the previous generations, and each step is a classification to select the

word or token to generate.

TABLE 1 Summary of notations and symbols in this paper.

Notation Definition

ðx,yÞ A pair of code-label example.

ft1, t2,…,tlg The token sequence of the code x.

fs1,s2,…,sl0 g The subtoken sequence of the code x after BPE.

CyðxÞ The probability of code x on class y predicted by classifier C.

lðxÞ The logits of code x produced by classifier C.

Jðy,CðxÞÞ The instance-level loss function.

Aðx,y;CÞ The set of adversarial examples of ðx,yÞ against C.

Xðx,x0Þ The indicator of the semantic equivalence of code pairs.

T The set of equivalent transformation operators for code.

4 of 29 ZHANG ET AL.

 20477481, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2571 by Peking U
niversity H

ealth, W
iley O

nline L
ibrary on [30/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A well-labeled dataset for source code processing usually consists of a set of source code and their corresponding labels, where each piece of

code x is in the form of sequences (character, subtoken, or token), trees (AST or complete syntax tree) or graphs (CFG or DFG), and so on,

according to the model requirements for input format, and y is the label of x. As the basis of DL for source code processing, a source code classi-

fier C can be formulated as a mapping function from the input code to a probability distribution over all possible labels. To be specific, C first

encodes the input code x�X to extract a feature vector lðxÞ¼ fl1ðxÞ,…, lnl ðxÞg, which is also known as logits, and then performs softmax classifica-

tion upon lðxÞ. The overall classification process can be deducted as

CiðxÞ¼
eðWSlðxÞþbSÞiPnc
j¼1e

ðWSlðxÞþbSÞj
, i¼1,2,…,nc ð1Þ

where nc is the number of classes, WS �Rnc�nl and bS �Rnc are trainable parameters of the softmax layer, and ð�Þi takes the ith element from the

vector.

3.2 | Black-box adversarial attack

In this paper, we mainly focus on the black-box scenario of adversary, where the victim model (target model) is treated as a black-box. In particu-

lar, only the output CðxÞ of a victim model given x as input can be observed, while other internal behaviors such as structures and weights are

invisible. This scenario is quite common in practice, where a large number of DL-based libraries or products are often black-box, which can only

be invoked through provided APIs. We formulate black-box attack in the scenario of classification, which can be easily generalized to other more

complex generation tasks.

Adversarial example. To define adversarial attack, we first need to introduce the concept of adversarial example. In general, adversarial exam-

ples are generated from an input that can be correctly classified by a DL model through some minor perturbations. An adversarial example and its

original counterpart are very similar and often indistinguishable from human beings. A set of adversarial examples A can be generally defined

as52,53

Aðx,y;CÞ¼ fx̂jy≠ argmaxCðx̂Þ^kx̂�xkp ≤ δg, ð2Þ

where x and x̂ are the original example and the adversarial example, respectively. The first constraint (y≠ argmaxCðx̂Þ) indicates that x̂ should mis-

lead C to an erroneous output, and the second constraint (kx̂�xkp ≤ δ) limits the perturbation within the allowable Lp distance δ. Note that the for-

mulation is for continuous input spaces such as images. In this paper, we define adversarial examples for source code processing following the

previous work.25

Given a well-trained classifier C and a labeled data pair (ðx,yÞ), where C correctly classifies x to y, that is, argmaxCðxÞ¼ y, the adversarial

example set A is defined as

Aðx,y;CÞ¼ fx̂jy≠ argmaxCðx̂Þ^Xðx, x̂Þ¼1g, ð3Þ

where X is the function determining whether a pair of code is semantically equivalent. To be specific, Xðx,x0Þ ¼1 when x and x0

are compilable, and for any legal input, the executional results of x and x0 are consistent; otherwise, x and x0 are incompilable or

inequivalent, and Xðx,x0Þ ¼0. There are also two constraints in Equation (3). The first constraint is the same as Equation (2), which aims to

mislead C, and the second constraint (Xðx, x̂Þ¼1) ensures that x̂ is semantic equivalent with x, from the perspective of compilation and runtime

execution.

Note that the definition of adversarial examples for source code processing differs from other fields such as NLP in the

second constraint. As in NLP, the generated examples must be natural and have similar meanings to the original ones. The

previous work25 substitutes the meaning constraint with the compilation constraint, because the similarity of two pieces of code is

difficult to measure. Although Equation (3) does not require the similar meaning of code, we still seek to preserve the

textual meaning during perturbation, because the generated examples should fit the distribution of programming languages and have high

quality.

Adversarial attack. Adversarial attack is the process to generate adversarial examples from the original inputs. A widely adopted idea is to

regard adversarial attack as an optimization problem. There are two types of settings for adversarial attack—targeted attack and untargeted

attack. Targeted attack aims to mislead C from the ground-true y to a certain ŷðŷ≠ yÞ. In this paper, we focus on untargeted attack, where any

ŷ≠ y is feasible. In the general form, the optimization objective can be defined as
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max
x̂

Jðy,Cðx̂ÞÞ, s:t:kx̂�xkp ≤ δ, ð4Þ

where J is the loss function, which shows the impact of the perturbation. In practice, the optimization process terminates when an adversarial

example is found, without having to exactly reach the global optima. Therefore, the less effective attack may miss the adversarial examples. When

coming to source code, we also substitute the constraint in Equation (4) with the second constraint in Equation (3). Hence, optimization objective

of adversarial attack for source code processing can be formulated as

max
x̂

Jðy,Cðx̂ÞÞ, s:t:Xðx, x̂Þ¼1, ð5Þ

However, proving the semantic equivalence of two code snippets is theoretically undecidable, and it is often impractical to check

the consistency of the executional results on all possible inputs, whose amount is often quite large or even infinite. Therefore, we

simulate X with equivalent transformation operators t� T (e.g., identifier substitution), where Xðx,tðxÞÞ¼1. Transformation of x for k

times, denoted as tkðxÞ, still satisfies Xðx,tkðxÞÞ¼1. Therefore, adversarial attack for source code processing can be further described as a

combinatorial optimization problem, where the attacker aims to find a proper combination of ti1 ,…,tim � T that produces an adversarial

example.

Previously proposed MHM. In order to solve the combinatorial optimization problem, Zhang et al25 propose a searching-based sampling

approach, namely Metropolis–Hastings modifier (MHM), which is the current state-of-the-art black-box adversarial attack algorithm against code

classifiers. MHM regards the problem as a sampling problem. The stationary distribution π is formulated as

πðx0Þ / ð1�Cyðx0ÞÞ �Xðx,x0Þ, ð6Þ

This formulation is similar to the optimization problem (Equation (5)), because sampling from Equation (6) tends to sample examples with low

ground-truth probability (Cyðx0Þ), which finally leads to a large loss Jðy,Cðx0ÞÞ.
MHM iteratively substitute identifiers in the code, and each iteration consists of two phases. The first phase generates a proposal to rename

an identifier t to t0, which are uniformly sampled, forming x0, and the second phase accepts or rejects the proposal (x! x0) according to the accep-

tance rate α computed in the manner of Metropolis–Hastings,26–28 formulated as

α¼ minf1,α ∗ g≈ min 1,
1�Cyðx0Þ
1�CyðxÞ

� �
ð7Þ

The major drawbacks of MHM are caused by randomness. From the perspective of searching, MHM makes simple random attempts at

each iteration, which is neither effective nor efficient. Another possible issue is that the generated adversarial examples can be “unnatural.”
The identifier substitutions are completely randomized, resulting in code that does not conform to programmers' coding habits. Such

examples can in fact be easily distinguished by programmers, whose quality is unsatisfactory. In this paper, we tackle both problems caused

by randomness by (1) searching for vulnerability in code, which ensures that CBA does not waste resources upon the ineffective

perturbations, and (2) employing CodeBERT to produce candidate perturbations, which satisfy the programming language distribution with

high quality.

3.3 | Pre-trained model

With the rapid development of DL, the ways of applying neural networks have also changed greatly. Recently, with the emergence of the power-

ful transformer architecture and the large pre-training corpus, instead of training independent end-to-end models solely from scratch, researchers

have managed to develop powerful pre-trained models following the “pre-training and fine-tuning” paradigm. The pre-trained models, stacking

multiple transformer layers (often), are pre-trained upon extremely large corpora to acquire general knowledge about the language, and then,

researchers may further fine-tune the models on the downstream tasks based on the pre-trained parameters. Pre-trained models have been

proven to be capable of learning universal language representations in the field of NLP.15,17–19,34 Later, pre-trained models are also introduced

into the field of SE, resulting in CodeBERT20 and GraphCodeBERT.21 Both pre-trained models have shown their great capability to promote the

performance of SE tasks.

We introduce CodeBERT20 and GraphCodeBERT21 in this subsection, and we employ them as subject models in our experiments. In this

paper, we incorporate CodeBERT,20 which is a bimodal pre-trained model for natural language and programming language, into the adversarial
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attack, forming CBA. Based on the programming language modeling by CodeBERT, CBA is even able to mislead the fine-tuned CodeBERT and

GraphCodeBERT for downstream classification tasks.

Architecture and corpus. The architecture of CodeBERT and GraphCodeBERT (illustrated in Figure 1) is based on RoBERTa,16 which is a pre-

trained model proposed in the field of NLP. Both CodeBERT and GraphCodeBERT employ the transformer architecture33 as the backbone. To be

specific, they consist of 12 transformer layers (L1-L12), and each layer has a hidden size of 768 and 12 attention heads. The overall parameter size

of each model is over 125 million.

The models are trained upon the CodeSearchNet dataset,22 which consists of publicly available open-source non-fork GitHub repositories

in six programming languages (i.e., Go, Java, JavaScript, PHP, Python and Ruby). The training corpus includes both bimodal and unimodal data,

where a piece of bimodal data consists of a source code function and its corresponding documentation description, while a piece of unimodal

data contains the function only. In particular, there are 2.1 million function-documentation pairs as bimodal data and 6.4 million unimodal

functions for training. In short words, the model size and the training data corpus size are much larger than the classic downstream tasks in

SE community.

Adaptation. To adapt to downstream SE tasks, CodeBERT and GraphCodeBERT usually serve as representation models, that is, they

encode the token sequence into a vectorized representation. Specifically, for classification tasks, which are the subject tasks studied in this

F IGURE 1 Illustrative examples of CodeBERT and GraphCodeBERT. Both the models consists of 12 transformer layers (L1-L12).
(A) CodeBERT takes source code (c1,c2,…) paired with (optional) comment (w1,w2,…) as input, and is pre-trained by MLM and RTD tasks.
Specifically, the two sub-models (CodeBERT-MLM and CodeBERT-RTD) are pre-trained in a GAN-style. MLM aims to recovery the masked
tokens and RTD aim to detect whether each token is substituted. (B) Besides the code-comment pair, GraphCodeBERT takes data flow into
consideration, by feeding the additional variable sequence (v1,v2,…) into the model. Two more pre-training tasks are introduced by
GraphCodeBERT—node alignment aligns the variable with the code token, and edge prediction learns “where the value comes from” according to
the data flow.

ZHANG ET AL. 7 of 29
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paper, CodeBERT and GraphCodeBERT insert a special <CLS> token into the very beginning of the input sequence, and make the prediction

with multiple dense layers based on the contextual representation of <CLS>. The pre-trained model is fine-tuned (further trained) upon the

downstream datasets, such as clone detection. Besides fine-tuning, there is another new adaptation approach of the pre-trained model,

namely prompting.54 Prompt learning is a light and efficient paradigm to apply the pre-trained model into the downstream tasks (usually small

datasets or even few-/zero-shot). Prompting directly adds an additional sequence (manually designed or automatically learned) to the token

sequence, and attempt to induce the knowledge learned by the pre-trained model. For example, in a bug detection task, we can feed a

sequence of the source code along with an additional template, such as “Is this code snippet buggy? <MASK>,” into the pre-trained

CodeBERT, and the model may produce buggy-or-not prediction at <MASK> without fine-tuning. Please refer to the good survey for more

details of prompt.54 In our paper, we do not involve design of the DL model. Therefore, we respect the existing usage of the models by fol-

lowing the fine-tuning procedure.

CodeBERT. CodeBERT is pre-trained by two tasks—masked language modeling (MLM) and replaced token detection (RTD). MLM, intro-

duced by BERT,15 randomly masks tokens with the special token <MASK> and forces the model the predict what <MASK> is. On the other

hand, RTD, proposed by ELECTRA,55 aims to detect which token in the given sequence is substituted. MLM and RTD work as adversary in

CodeBERT, leading to two sub-models—CodeBERT-MLM and CodeBERT-RTD, as illustrated in Figure 1A. The goal of CodeBERT-MLM is

to fool CodeBERT-RDT by revocrying the masked sequence, and CodeBERT-RTD's purpose is to detect replacements. Pre-trained in a

GAN-sytle,56 the two sub-models compete with each other and improve each other. Currently, there are two released versions of

CodeBERT: CodeBERT obtained through RTD§ (where CodeBERT-MLM is discarded after the pre-training is complete), and

CodeBERT-MLM obtained through MLM only.¶ In this paper, we employ CodeBERT-MLM to carry out CBA attack, and we leverage our

attack against both CodeBERT models to examine the capacity of our proposed approach and the adversarial vulnerability of the pre-

trained models.

GraphCodeBERT. As shown in Figure 1B, apart from the code-comment pair, GraphCodeBERT also takes the variable sequence as input.

GraphCodeBERT incorporates data flow knowledge into pre-training, by introducing two tasks—node alignment and edge prediction. (1) Node

alignment requires the model to align each variable with its corresponding appearance in the code token sequence. This pre-training task helps

GraphCodeBERT to align nodes in the data flow with the code snippet. (2) Edge prediction demands the model to learn “where the value of each

variable comes from.” For example, in the demonstrative example in Figure 1B, the value of v3 comes from v1 rather than v2, according to the data

flow. Therefore, the edge prediction between v1 and v3 is true, while v2 and v3 false. This pre-training task enables GraphCodeBERT to learn from

data flow, and introduces data flow knowledge into the pre-trained model. We fine-tune the released GraphCodeBERT# and evaluate CBA against

it in our paper.

4 | CodeBERT-ATTACK

In this section, we first present a brief overview of our proposed CBA (Section 4.1). Then, we illustrate our internal design of CBA in

detail (Sections 4.2 and 4.3). After that, we elaborate key know-hows we explore and adopt in our design and implementation

(Section 4.4).

4.1 | Overview

We first give a high-level description of our newly proposed method CodeBERT-Attack (CBA) that utilizes the CodeBERT language model to gen-

erate adversarial examples to mislead the fine-tuned CodeBERT models or other DL models. Our approach iteratively performs black-box identi-

fier substitution, and each iteration consists of three steps: (1) locating the vulnerable identifiers of victim model, (2) generating candidate

substitutions with CodeBERT, and (3) probing the victim model with the potential adversarial examples. CBA repeats these steps until an adver-

sarial example is found, or the allocated resource (e.g., iterations or computational time) exhausts. Algorithm 1 summarizes the key workflow

of CBA.

To be specific, in step one, we locate the pivotal identifiers that are important to the classification of the victim model by masked classifica-

tion (Figure 2A). The more important these identifiers are, the more likely the perturbations upon them would form an adversarial attack. Then, in

step two, we generate the candidate substitutions by choosing the top-k possible combinations of subtokens predicted by masked language

modeling employing CodeBERT (Figure 2B). Then, we test the candidates against the victim model, to determine whether to terminate (detecting

an adversarial example or exceeding the allocated budget). In the following iteration, we select the substitution that causes the largest decrease in

the probability of the ground-truth label predicted by the victim model. If there does not exist such examples, CBA also terminates itself to save

time and resources for other trials (Lines 18–21 in Algorithm 1).
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4.2 | Vulnerability analysis

As discussed earlier, perturbations upon simple random of arbitrary positions are neither effective nor efficient. In this paper, we propose vulnera-

bility analysis in CBA for further guidance of attacks. Intuitively, if a prediction of the victim model highly depends on a particular identifier, this

identifier is often likely to be vulnerable, as some minor perturbations upon this identifier would easily break the dependency and eventually fail

the victim model. In other words, to locate vulnerable identifiers is to identify the “important” ones for a decision of the model. Inspired by ratio-

nal analysis,57,58 we adopt masked classification to determine whether and to what extent an identifier is vulnerable (Line 5 in Algorithm 1).

Give a code token sequence x, CBA retrieves the user-defined identifiers (e.g., functions and variables defined and used within the snippet),

and builds a set of identifier masked sequence, denoted as fm1ðxÞ,m2ðxÞ,…g. Specifically, for the ith identifier, CBA builds miðxÞ by replace all

appearances of the ith identifier with the mask token <MASK>. For instance, in Figure 2A, the original x contains two identifiers—“f” and “arg,”
and CBA builds two miðxÞ by masking “f” and “arg,” respectively, that is, m1ðxÞ¼“int <MASK> (int arg) return arg; ” and mxðxÞ¼“int f (int <MASK>)

return <MASK>; .” Then we feed each miðxÞ into the victim model, obtaining the V-score (vulnerability score) of each identifier. For miðxÞ with the

ith identifier in x masked, the V-score is formulated as the probability decrease on the ground-truth class y predicted by the victim model C:

Vðx, i;C,yÞ¼CyðmiðxÞÞ�CyðxÞ ð8Þ

The V-score approximates to what extent a prediction of C depending on an identifier, further indicating the vulnerable level. In general, the

higher the V-score is, the more probable perturbations upon this identifier would mislead C. In CBA, we select the top nvul identifiers with the

highest V-score as the vulnerable identifiers, where nvul is the hyper-parameter of vulnerable identifier number.

4.3 | Candidate generation

Instead of simple random generation, CBA utilizes CodeBERT to generate substitution candidates for the vulnerable identifiers, which brings a

major advantages: CodeBERT can produce candidates with high quality, as they are likely to satisfy the distribution of programming languages.

ZHANG ET AL. 9 of 29
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Thanks to vulnerability analysis in the previous step, CBA precisely applies small and natural perturbations at the vulnerable position, boosting the

effectiveness and efficiency of adversarial attack.

In particular, CBA feeds the BPE-splitted subtoken sequence fs1,…,sl0 g into CodeBERT without masking, obtaining the subtoken-level predic-

tion probability sequence CðxÞ¼ fc1,…,cl0 g, where each ci is a probability vector over the subtoken vocabulary at position i predicted by

CodeBERT (Line 6 in Algorithm 1). The reason we do not mask the identifiers is that we aim to preserve the textual meaning after perturbation.59

According to the previous study, when employing BERT-like model for synonymous word substitution, masking makes the pre-trained MLM

model to substitute the target word completely based on the context, which can be reasonable, but completely unrelated to the original word.

For instance, given a sequence “I like the dog,” if we mask the word “dog,” almost any noun could be an appropriate substitution based on the

context, such as “weather” or “movie,” but they are not related to the original word “dog.” However, if we keep the word, besides the context,

the pre-trained MLM model also needs to consider the textual information of “dog,” leading to possible substitutions such as “puppy.” In addition,

unmasking makes the computational cost rather low, compared with masking. Without masking, in each iteration, CBA invokes CodeBERT-MLM

only once (Line 6 in Algorithm 1). The substitution candidates are generated based on the predicted probability sequence by CodeBERT-MLM.

However, if mask, we have to build masked sequences for each vulnerable identifier and call CodeBERT multiple times, which is much more

costly.

F IGURE 2 An illustrative example of our proposed CBA. Panel (A) shows the process to locate vulnerable identifiers (with high V-score) by
masked classification. [M] refers to the masked identifier. Panel (B) presents the process to generate candidate substitutions of vulnerable
identifiers. In this specific example, the vulnerable variable “arg” appears twice in the code, and therefore, CBA generates two intermediate
candidate sets for each appearance of “arg” (see “Subtoken Full-Permute” in the figure). Then, CBA takes both location into consideration and
merges these two intermediate sets, forming the final candidate set (see “Merge” in the figure). Later, for each candidate, CBA replaces the “arg”
tokens with the specific candidate, leading to a perturbed code example.

10 of 29 ZHANG ET AL.
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Then, CBA generates the candidate substitution in two phases. In phase (1), CBA builds the intermediate candidate set at each appearance

position of the identifier to be substituted in x. Suppose the identifier appears at position Li , corresponding to token ti, and ti is split into

fsi0 ,…,sj0 g after BPE, fci0 ,…,cj0 g would result in CodeBERT's prediction for ti. Ideally, we select the subtoken combinations with the highest proba-

bility as the desired intermediate candidate set. However, this can often be difficult and even impractical, because the computation of probabili-

ties of all subtoken combinations is a series of chain multiplications over fci0 ,…,cj0 g, which causes exponential explosions. Therefore, instead of

considering all possibilities, we approximately consider only the subtokens with high probabilities at each position. For each subtoken

cj � fci0 ,…,cj0 g, CBA selects the top-k subtokens according to cj, and computes the probabilities of combinations, that is, the full-permutation

within the selected subsets (as shown in “Subtoken Full-Permute” in Figure 2B). In other words, in this phase, CBA employs the pre-trained

CodeBERT to model the marginal distribution of each substitution for each location independently. CBA generates the intermediate candidate set

for ti by choosing the top-k combinations with highest probabilities (Line 12). Because an identifier may appear multiple times in x, we have to col-

lect the most probable substitutions at each position first. In the demonstrative example of Figure 2B, the vulnerable variable “arg” appears twice

in the code, and CBA produces two intermediate sets correspondingly.

Now we have several intermediate candidate sets, and each set refers to the substitution recommended by CodeBERT at a specific position

where the identifier appears. Phase (2) merges these intermediate sets, and form one set of subtoken combinations for identifier substitution,

denoted as S. Suppose the intermediate sets are S1,…,Sm, when the identifier appears m times in x, the probability of the subtoken combination

I , which would finally concatenate as a legal token, can be simply deducted as

probðIÞ¼
0, if I is illegalQm
i¼1

probiðIÞ, otherwise

8<
: , ð9Þ

where probiðIÞ is the probability of I in intermediate set Si. When I is illegal, or I is not in one of the intermediate sets, probðIÞ¼0. Note there

are three types of illegal I listed as below. (1) I does not comply with the naming rules of the certain programming language. For example, in most

programming languages, a valid identifier can have letters (uppercase “A”–“Z” and lowercase “a”–“z”), digits (“0”–“9”) and underlines (“_”), with

the further constraint that the very first letter must be either a letter or an underline. Therefore, identifiers such as “1index” is illegal. (2) I is in

the stop-word set. This set consists of key words (e.g., “for” and “while”) and commonly used library functions (e.g., “printf” and “scanf” from

“stdio.h” in the C/C++ language). Additionally, “main” is also included in the stop-word set. If I is in the stop-word set, it is not likely to be a

user-defined identifier. For compilability considerations, we consider all stop-words as illegal. (3) I is not a legal token. This is caused by BPE in

CodeBERT. BPE employs a special letter “ _G” to indicate the beginning of a new token. For instance, “Ġil” refers to a new token with the beginning

subtoken of “il,” and the following subtoken “legal” makes the rest of the whole token “illegal.” If I does not begin with “ _G” (e.g., “index”) or I
contains “ _G” in the middle (e.g., “in _Gdex”), the subtokens in I cannot be synthesized into a token, and therefore, it is illegal.

Similarly, CBA selects top-k subtoken combinations with high merged probabilities from the merged set, forming the final candidate set for

substitution of this identifier (Lines 14 and 15). When configuring with different k, we adjust the selection scope of tentative candidates. From

the perspective of probability distribution, this phase merges the marginals to build the joint distribution, considering each position where the vul-

nerable identifier appears. Take the demonstrative example in Figure 2B for instance, by merging the two intermediate sets into a single one, CBA

selects the top plausible substitution candidates of “arg,” that is, “argc,” “argv,” and “argr.” Later, CBA probes the victim model with these candi-

dates and completes the whole iteration.

Note that there may be inappropriate substitution candidates produced during the two phases, such as illegal identifier and remaining identi-

cal to the original one. After the intermediate sets and the final candidate set are built, CBA performs a filtration, removing all illegal identifiers

and the original one (if it appears in the set), leaving the rest to the next step.

4.4 | Key know-hows of CBA

In this part, we describe some key know-how we explore and gain during the design and implementation of CBA.

MLM. As demonstrated in Figure 2B, CBA only needs CodeBERT-MLM to predict subtoken probability at specific positions where the vulner-

able variable appears. Ideally, we may modify the final (the 12th) transformer layer in CodeBERT to compute only upon such positions. However,

it takes much engineering effort under the current mainstream framework such as the Huggin Face Transformers package. So CBA takes a step

back and employs a much easier implementation without losing much computational efficiency—we allow CodeBERT to compute subtoken proba-

bilities over the entire sequence, and collect only the target subtokens for further computation. Due to the self-attention mechanism in the trans-

former architecture, CodeBERT has to compute over the entire subtoken sequence in its lower 11 layers (note that CodeBERT consists of

12 transformer layers), in order to capture the contextual information. Assuming the subtoken sequence is long and the vulnerability appears

sparsely (only a few times), the computational cost of the 12-th layer in the ideal implementation can be neglected, and the overhead of our imple-

mentation is less than 1
12 compared with the ideal one, which is acceptable for modern GPUs in our case.
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Smoothing. According to Equation (9), probðIÞ¼0 if 9i, s.t. I =2Si. However, only few combinations are in all intermediate sets, that is, the

merging multiplications often produce zero probabilities. To tackle this issue, we employ the smoothing technique in the merging process. When

I is not in Si, we assign probiðIÞ with

probiðIÞ¼ β � min
I0 � Si

probiðI 0Þ ð10Þ

which is a very small non-zero value, so that subtoken combinations are allowed to be absent in some intermediate sets. β is a hyper-parameter,

and we fix it to 0.1.

Cut‐off. Although CBA adopts the approximation by only considering the top-k subtokens for each cj � fci0 ,…,cj0 g, the computational cost is

still exponential. Therefore, we only consider the very first intermediate candidate sets during merging for the identifier when a computational

budget exhausts, regardless of the rest. We regard this budget as a hyper-parameter of CBA.

Language model filtration. Algorithm 1 considers only the probability of the identifier (subtoken subsequence) substitution predicted by

CodeBERT when generating the intermediate sets (full-permutation) and the merged set. To further facilitate the quality of the substitution, we

filter S with CodeBERT-MLM, selecting only identifiers with high perplexities (PPL). PPL is a widely adopted metric in NLP to measure the quality

of the generated examples. Given a sequence example w1,…,wl, where each wi is a subtoken, we compute PPL with CodeBERT as below.

PPLðw1,…,wlÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYl

i¼1

1
probCodeBERTðwijw1,…,wi�1Þ

l

vuut ð11Þ

where probCodeBERTðwijw1,…,wi�1Þ is the probability of wi predicted by CodeBERT given the prefix (w1,…,wi�1). Note that we feed the subtoken

sequence of the identifier only, rather than the whole code snippet, into CodeBERT. Because the identifier is often short (four to five subtokens

at most), the filtration by CodeBERT PPL is not the computational bottle-neck.

Mask. Unlike CodeBERT, whose (subtoken) vocabulary already includes <MASK>, most DL models do not have <MASK> in their vocabulary,

which would cause problems for masked classification in CBA. However, there is often an unknown (<UNK>) in the vocabulary, due to the OOV

issue of the DL models. Hence, we take advantage of <UNK> for our masked classification, by replacing the identifiers with <UNK>, which

achieve the same effect as masking.

Simulated annealing. The probing phase in CBA is equivalent to greedy hill descending. During our initial experiments, we observe that

this greedy search would cause early termination of CBA, because the algorithm gets stuck in some local optimal cases. That is, when the

algorithm cannot decrease the predicted probability of the victim model, it terminates and returns none (see Line 22 in Algorithm 1) To jump

out of such local minimizations, we introduce simulated annealing60 into CBA, forming CBA-SA. In the probing phase, CBA-SA selects the

substitution with the lowest probability of the ground-truth class predicted by the victim model from the candidate substitutions, forming

token sequence x0 (where the identifier is already substituted). x0 is accepted for the ith iteration (i.e., xi x0) according to the acceptance rate α,

formulated as

α¼ e�
Cy ðx0Þ�Cy ðxi�1 Þ

Titer , if Cyðx0Þ≥Cyðxi�1Þ
1, otherwise

(
ð12Þ

where xi�1 comes from the i�1th iteration, Titer is the temperature that decreases exponentially as the iteration grows, defined as Titer¼ T0 � γiter,
and γ � ð0,1Þ is the cooling factor. When Cyðx0Þ<Cyðxi�1Þ, x0 is always accepted; otherwise, x0 is very likely to be accepted in the beginning itera-

tions, but rejected when the algorithm already run a couple of iterations. Simulated annealing enables CBA to make bold attempts in the very first

iterations while keeping searching the descending directions.

5 | EVALUATION

We implement CBA as an extensible adversarial attack framework in Python with more than 5000 lines of code based on the DL framework

PyTorch (ver.1.4.0) and the transformers packagek (ver.3.3.0). With CBA, we performed a large-scale study to investigate the following research

questions:

RQ1: Attack effectiveness. Is CBA capable of performing black-box adversarial attacks effectively for source code processing? Can

CodeBERT boost the searching process of adversarial example generation over the random MHM?

12 of 29 ZHANG ET AL.
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RQ2: Robustness of pre-trained models. Are the pre-trained model and their downstream models robust against adversarial attack? Whether

and to what extent can the large pre-trained corpus and large parameter size help the pre-trained model to gain resilience against adversarial

perturbations?

RQ3: Attack efficiency. Can CBA perform adversarial attack efficiently? Does MHM lack of efficiency indeed due to simple randomness, and

can CBA outperform MHM by utilizing CodeBERT?

RQ4: Robustness enhancement through pre-training. Can pre-trained models gain resilience from designed pre-training tasks? To what

extent the RTD pre-training task helps pre-trained model to enhance resilience against adversarial perturbations such as identifier substitution? Is

it plausible to integrate adversarial training into pre-training?

RQ5: Quality of adversarial examples. Are adversarial examples generated by CBA with high quality? Compared with MHM, are the perturba-

tions natural from the perspective of human programmers?

5.1 | Experimental settings

Subject task and dataset. We select two source code classification tasks and datasets from CodeXGLUE benchmark23 (i.e., functionality classifica-

tion OJ1,2 and code clone detection OJClone2–5), which are representative ones by DL. Table 2 summarizes the statistics of the subject datasets,

which contain more than 1.9 million LOC in total. In particular, the original testset of OJClone in CodeXGLUE contains about 32K code pairs but

is highly unbalanced. Therefore, we downsampled 4.8K pairs forming the balanced testset. We follow the procedure in CodeXGLUE to pre-

process OJ and OJClone for further analysis. In OJ, we employ classification accuracy (Acc) as the performance indicator of the DL models, and in

OJClone, we employ F1-score as the indicator. These indicators are widely adopted in previous researches.1–5

Subject model. We employ LSTM, CodeBERT, and GraphCodeBERT as our subject (victim) models. LSTM is one of the most classic and rep-

resentative sequential model adopted in the SE community. Although modern models do not directly apply the LSTM architecture, it is often uti-

lized as the backbone to process sequence signals.2,8,13 For instance, the state-of-the-art Code2Seq13 employs LSTM to process the node paths

in the AST. Therefore, to study the universality of the sequential models, we perform adversarial attack upon the LSTM architecture. As for

CodeBERT20 and GraphCodeBERT,21 they are recently proposed pre-trained models for source code. As introduced in Section 3.3, The models

consist of 12 layers of transformers. The “pre-training and fine-tuning” paradigm of CodeBERT and GraphCodeBERT has been proven very useful

on many SE tasks, as presented in the recently proposed benchmark of CodeXGLUE.23

We follow the previous work instruction to set up the training configurations for LSTM.25 Before fine-tuning in OJ and OJClone, CodeBERT

and GraphCodeBERT are first fine-tuned in the manner of MLM with OJ, as we need to adapt the model to the distribution of C/C++ language.

The fine-tuned CodeBERT-MLM for MLM is incorporated into CBA. In particular, we follow the open-sourced code provided in CodeXGLUE to

fine-tune the CodeBERT models in OJClone. During fine-tuning, we perform binary classification, and during inference, CodeBERT makes predic-

tions based on a selected threshold, which is selected in validation set—if the produced probability is greater than the threshold, the input code

pair is classified as a clone; otherwise, they are not a clone pair. In our experiment, the threshold is 0.01. The models achieve competitive results

on the subject datasets (Table 3).

Baseline. We adopt MHM as the baseline for comparative studies, which is already introduced in Section 3.2.

Evaluation metrics. We adopt attack success rate (Succ) as the major performance indicator of adversarial attack. Formally, it is computed as

Succ¼kDcorrect \ D̂errork
kDcorrectk , where k �k refers to the example number of a set, Dcorrect is the subset of the testset in which the examples are initially

TABLE 2 Statistics of the subject tasks and datasets.

Dataset Train # Test # Class # Vocab # LOC

OJ �39K �10K 104 �10K �1.9M

OJClone �1.3M �5K 2 �10K �1.9M

TABLE 3 Performance of the subject models.

Model
OJ(LM) OJ(CLS)

OJClone

PPL Acc (%) Acc (%) F1 (%)

LSTM - 95.3 87.4 87.3

CodeBERT-MLM 1.056 98.6 86.7 86.7

CodeBERT - 98.8 87.2 87.2

GraphCodeBERT - 97.6 84.4 85.1

ZHANG ET AL. 13 of 29
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correctly classified by the victim model, and D̂error is another subset in which the examples are erroneously classified after adversarial attack. Per-

ceptually, attack success rate suggests the powerfulness of the attack approach to mislead the victim model from originally correct classifications

to erroneous behaviors. Besides, we also take the performance decreasing rate of the victim model before and after adversarial attack into consid-

eration. This indicator intuitively shows the overall performance change of the victim after attack.

Experimental configuration. We leverage CBA to perform large-scale comparative experiments to answer the research questions. For RQ1,

we attack LSTM with CBA and CBA-SA, along with the MHM baseline, in OJ and OJClone, to demonstrate the effectiveness of CBA. For RQ2,

we attack the fine-tuned CodeBERT-MLM and GraphCodeBERT, to verify whether large model and large pre-training corpus is able to obtain

resilience against adversarial attack, compared with traditional from scratch-trained models, such as LSTM. For RQ3, we analyze the attack pro-

cesses from above, to demonstrate the efficiency of CBA. For RQ4, we attack CodeBERT and CodeBERT-MLM with CBA. By comparing them,

we may verify whether the RTD pre-training task benefits the fine-tuned robustness against CBA. In addition, this RQ leads to an idea of “adver-
sarial pre-training,”61 where adversarial training is incorporated into the pre-training stage rather than fine-tuning. The fine-tuned model may

inherit the resilience against attack, without additional adversarial training, which is efficient and friendly to the downstream task practitioners.

For RQ5, we carry out human evaluation against adversarial examples generated by CBA and MHM. Specifically, we obtain examples from OJ

which can be successfully attacked by both CBA and MHM against LSTM, and filter out those long sequence with the token length threshold of

80, leading to 38 example tuples. Each tuple consists of the original source code snippet, which can be correctly classified by the LSTM model,

and the identifier substitutions generated by CBA and MHM, which can successfully mislead the LSTM model to erroneous prediction. Finally, we

invite four PhD students as the independent volunteers, who all have at least three years of experience of C/C++ programming, to evaluate the

example tuples from the views of naturalness and consistency.

We attack the victim models over the whole testsets. For OJClone, we carry out two trials upon a code pair, and each trial perturbs only one

piece of code. We limit the iteration size to 20 and candidate size to 10. This setting is to better compare the efficiency of CBA with the MHM

baseline. Please refer to Section 5.4 for more comprehensive discussions. In CBA, we set the vulnerable size to 5 at most. As for the simulated

annealing process, we set the initial temperature T0 to 1 and the cooling factor γ to 0.8. All the experiments were run on a server of Ubuntu

18.04 system with 32-core 2.50GHz Xeon Platinum CPU, 128 GB RAM and 4 NVIDIA Tesla V100 16GB GPUs.

5.2 | RQ1: Attack effectiveness

Effectiveness. Table 4 shows the performance of LSTM before and after adversarial perturbations by CBA and CBA-SA, along with the random

baseline MHM. The attack success rate (“Succ (%)” in Table 4) is computed only over the originally correctly predicted examples. On average,

CBA and CBA-SA reduce the performance of LSTM by 42.5% and 46.0%, outperforming the MHM baseline (35.0%). As for attack success rate,

CBA and CBA-SA successfully mislead LSTM at rates of 38.5% and 41.7%, also exceeding MHM (29.9%). In particular, in OJ, CBA-SA is capable

of fooling the LSTM model at a success rate of more than 50%, even when the iteration size and the candidate size are rather small. Furthermore,

in OJ, we even test MHM with a large candidate size (50), denoted as MHM(50), which is much larger than the configurations in Section 5.1 (can-

didate size = 10). The attack success rate of MHM(50) is 43.3%, and it reduces the accuracy of LSTM to 53.2%, which is still outperformed by

CBA and CBA-SA. Therefore, we can see that CBA demonstrates its effectiveness in OJ and OJClone against LSTM models.

Adversarial example. Table 5 presents a typical set of adversarial perturbations produced by MHM and CBA. The original code outputs a

sequence of integers in reversed order. MHM substitutes “i” with “shijianbiao” (Chinese pinyin for “schedule”), misleading LSTM from 46 (correct)

to 91. Such perturbation is random and easy to be distinguished, as no programmers would name a loop variable to “schedule,” and therefore,

such perturbations are likely to have rather low quality. In comparison, CBA substitutes “n” and “a” with “t” and “as,” respectively, resulting in

LSTM's erroneous prediction to class 101. Such identifier perturbations may have higher quality, because “t” for input size and “as” for array are

much more common. In addition, CBA-SA can cover any perturbation produced by CBA; therefore, they produce identical examples in Table 5.

More cases of MHM and CBA against LSTM are presented in Section A1. Please refer to the appendix. Besides the cases, we also carry out

human evaluation in RQ5 to demonstrate the perturbation quality of CBA. Please refer to Section 5.6 for more discussions.

TABLE 4 Adversarial attack against LSTM.

Adv.
OJ OJClone

Atk. Succ (%) Acc (%) Δ (%)a Succ (%) F1 (%) Δ (%)a

None - 95.3 - - 87.3 -

MHM 29,1 65.4 32.4 30.7 54.6 37.5

CBA 47.0 48.9 48.7 30.0 55.6 36.3

CBA-SA 51.0 45.2 52.6 32.4 53.0 39.3

aIn OJ, Δ¼ 1� Acc
AccNone

, while in OJClone, Δ¼1� F1
F1None

. High Δ suggests the effectiveness of the corresponding adversarial attack.
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Answer to RQ1: CBA is capable of performing effective adversarial attack against the popular LSTM model in OJ. CBA is much more

effective than the MHM method.

5.3 | RQ2: Robustness of pre-trained models

Effectiveness. Table 6 summarizes the performance of CodeBERT-MLM in OJ and OJClone before and after adversarial perturbations. Similar

conclusions to Table 4 can be drawn. The success rates of CBA and CBA-SA on average are 15.6% and 17.6%, outperforming MHM baseline

(14.3%), while the performance of CodeBERT-MLM after CBA and CBA-SA decreases 15.4% and 17.5%, respectively, also outperforming MHM

(14.7%).

Robustness of CodeBERT-MLM. Comparing Tables 4 and 6, we formulate the robustness gaining of CodeBERT-MLM (Table 7). On average,

the attack success rates of all three approaches decrease 71.6% and 37.1% in OJ and OJClone, respectively, when the victim model changes from

LSTM to CodeBERT-MLM. Such results indicate that pre-training with MLM on a large corpus may help DL models to gain resilience against iden-

tifier substitution attack.

Adversarial example. Please refer to Section A1 in the appendix for cases of perturbations by MHM and CBA against CodeBERT-MLM. Simi-

lar findings as Section 5.2 can be found. Due to randomness, MHM substitutes identifiers to completely unrelated ones (e.g., “c”! “EVEN”), neg-
lecting the original textual and contextual information. However, CBA performs much more reasonable substitutions by considering the context.

This is because the CodeBERT-MLM language model adapts to the distribution of C/C++ programming language, and generates more natural

and consistent candidates.

Threshold bias in OJClone. The threshold of CodeBERT in OJClone is likely to cause the rather low but competitive performance of CBA

compared with MHM (Table 6). As introduced in Section 5.1, CodeBERT on OJClone plays the role of a binary classifier, which outputs a clone

probability and predicts according to a threshold (automatically selected on the validation set). Intuitively, the threshold is supposed to be near

0.5 for a binary classification, but in our OJClone experiment, the threshold of CodeBERT is heavily biased (0.01).**

The threshold bias indicates that CodeBERT fine-tuned upon OJClone is not confident about its clone prediction, because the clone probabil-

ity is heavily offset to 0 (leading to the threshold of 0.01). Therefore, misleading CodeBERT from the clone prediction to non-clone (C2N) is much

easier than from non-clone to clone (N2C). After this analysis, we study the case numbers of C2N and N2C of MHM, CBA, and CBA-SA (Table 8).

Table 8 suggests that MHM takes the advantage of the threshold bias by performing the easier C2N attack almost twice than the N2C flipping.

However, CBA does not show any obvious preference to the C2N attack, as the number of C2N and N2C are comparable.

TABLE 5 Examples of adversarial perturbations against LSTM in OJ.

Source code ID substitution

ZHANG ET AL. 15 of 29
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Robustness of GraphCodeBERT. It is possible that CBA is specialized to attack CodeBERT-MLM only, since in the previous experiments,

CBA uses CodeBERT-MLM's spear to attack its own shield. Therefore, we further apply CBA to attack another pre-trained model, that is,

GraphCodeBERT. The results are shown in Table 9. The success attack rates of CBA against GraphCodeBERT are 7.2% and 24.4% on OJ and

OJClone, respectively, and the simulated annealing trick in CBA-SA further increase them to 8.1% and 25.8%. Therefore, CBA is still capable to

attack pre-trained models other than CodeBERT-MLM itself.

Additionally, we compare the performance of LSTM and GraphCodeBERT in order to demonstrate from another side that large model and

large corpus pre-training may enhance the robustness. The comparison is presented in Table 9. When the victim model changes from LSTM to

GraphCodeBERT, the attack success rate on average decreases 84.4% and 20.0% upon OJ and OJClone separately. Such results also suggest that

the large model and the large corpus pre-training may provide resilience against attack in the downstream task.

Answer to RQ2: The fine-tuned large pre-trained models are more robust than traditional end-to-end LSTM in OJ and OJClone against

CBA and MHM. However, there are still non-robust drawbacks within CodeBERT-MLM, such as the threshold design for OJClone.

5.4 | RQ3: Attack efficiency

Efficiency. We plot the attack success rate curves against iteration of all adversarial attack algorithms against LSTM and CodeBERT-MLM in OJ

(Figure 3). The computational bulk in CBA along with the MHM baseline is to probe the victim model. Therefore, the number of calls to the victim

model before a successful attack indicates the efficiency of the attack approach. As we set the candidate size of both CBA and MHM to be identi-

cal, the success-iteration curve also indicates the efficiency—the higher of the success-iteration curve, the more efficient the attack algorithm.

CBA and CBA-SA saturate after about 15 iterations, indicating that configurations in Section 5.1 is reasonable. Curves of MHM are much lower

and rise much slower than CBA, indicating that CBA is much more efficient than MHM method. In addition, we do not employ the actual running

time as the major metric, because it is highly dependent on the condition of the machine (such as workload) at the time.

Randomness in MHM. To further demonstrate the drawback of simple random strategy in MHM, we dig into the sampling process, discover-

ing that in the 20 iterations on OJ, MHM in most cases only produces 1 or 2 accepted substitutions, while other proposals are all rejected by

M-H. Therefore, MHM wastes most of its time upon useless rejected proposals. One major reason is that these proposals are randomly generated,

which may not well fit the stationary (target) distribution. On the other hand, equipped with better searching guidance by CodeBERT, CBA keeps

searching for plausible adversarial perturbations with much higher efficiency.

TABLE 7 Adversarial robustness gaining of CodeBERT-MLM from pre-training.

Adv.
OJ Atk. Succ (%) OJClone Atk. Succ (%)

Atk. LSTM CBa Δ (%)b LSTM CBa Δ (%)b

MHM 29.1 8.1 +72.2 30.7 20.4 +33.6

CBA 47.0 13.0 +72.3 30.0 18.1 +39.7

CBA-SA 51.0 15.1 +70.4 32.4 20.1 +38.0

aCodeBERT-MLM, pre-trained through MLM only.
bΔ¼1� CB

LSTM. Positive Δ indicates resilience against adversarial perturbations of CodeBERT-MLM.

TABLE 6 Adversarial attack against CodeBERT-MLM.

Adv.
OJ OJClone

Atk. Succ (%) Acc (%) Δ(%)a Succ (%) F1 (%) Δ(%)a

None - 98.6 - - 86.7 -

MHM 8.1 89.5 9.2 20.4 69.2 20.2

CBA 13.0 84.7 14.1 18.1 72.2 16.7

CBA-SA 15.1 82.6 16.2 20.1 70.5 18.7

aIn OJ, Δ¼ 1� Acc
AccNone

, while in OJClone, Δ¼1� F1
F1None

. High Δ suggests the effectiveness of the corresponding adversarial attack.
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Simulated annealing. CBA-SA adapts simulated annealing to avoid getting stuck on local optima. As shown in Figure 3, when CBA saturates,

the curves of CBA-SA still increases. This is because simulated annealing enables CBA-SA to jump out of local cases and to continue the searching

process. Eventually, CBA-SA achieves a higher attack success rate than CBA (as in Tables 4 and 6).

Answer to RQ3: The proposed CBA is more efficient than the random MHM baseline to attack LSTM and CodeBERT-MLM. The incor-

poration of simulated annealing further improves the performance of CBA-SA without the loss of efficiency.

5.5 | RQ4: Robustness enhancement

Effectiveness. Table 10 shows the attack success rate of CBA against CodeBERT-MLM and CodeBERT. Against CodeBERT, CBA-SA is more

effective than CBA as expected. On average, CBA and CBA-SA produce success rates of 13.9% and 15.6%, respectively.

Robustness enhancement by RTD. In OJ, CodeBERT reduces the attack success rate of CBA and CBA-SA on average by 5.8% than

CodeBERT-MLM, while in OJClone, 14.9%. The result indicates that CodeBERT pre-trained with MLM and RTD may be more adversarially robust

than CodeBERT-MLM pre-trained only with MLM, as CodeBERT is harder to be attacked.

TABLE 8 Adversarial errors of CodeBERT-MLM in OJClone.

Err. Pred. MHM CBA CBA-SA

Not clone! clone 654 734 815

Clone! not clone 1045 775 861

TABLE 9 Adversarial robustness gaining of GraphCodeBERT from pre-training.

Adv.
OJ Atk. Succ (%) OJClone Atk. Succ (%)

Atk. LSTM GCBa Δ (%)b LSTM GCBa Δ (%)b

CBA 47.0 7.2 +84.7 30.0 24.4 +18.7

CBA-SA 51.0 8.1 +84.1 32.4 25.5 +21.3

aGraphCodeBERT, pre-trained through MLM, data flow node alignment, and data flow edge prediction tasks. The last two tasks force GraphCodeBERT to

learn the data flow information.
bΔ¼1� GCB

LSTM. Positive Δ indicates resilience against adversarial perturbations of GraphCodeBERT.

F IGURE 3 Attack success rate of adversarial attack algorithms against LSTM and CodeBERT-MLM in OJ. The higher curve suggests the more
effective and efficient black-box attack algorithm.
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This result is also explainable—RTD requires CodeBERT to distinguish those replaced tokens, therefore, the pre-trained CodeBERT naturally

has the capability to detect the substitutions, and the fine-tuned model inherits the resilient to identifier substitution attack. Furthermore, the

results indicates the feasibility of adversarial pre-training for source code processing.

Robustness enhancement by data flow. Compared with CodeBERT-MLM, GraphCodeBERT additionally introduces two per-training tasks

based on the data flow. We compare CodeBERT-MLM and GraphCodeBERT to see whether data flow can improve the robustness of the fine-

tuned model. The comparison results are shown in Table 11, which is quite subtle. In OJ, GraphCodeBERT reduces the attack success rate of CBA

and CBA-SA on average by 45.5%, which is even significant than RTD in CodeBERT. However, in OJClone, the situation is reversed, as the aver-

age success rate against GraphCodeBERT increases 30.9% compared with CodeBERT. The results suggest the challenge of universal adversarial

pre-training, where the pre-training task needs to be designed carefully.

Answer to RQ4: The pre-training RTD task is capable to help the model to gain adversarial resilience against identifier substitution

adversarial attack. It suggests that adversarial pre-training is plausible. However, results of GraphCodeBERT also indicate the challenge

of the design of the adversarial pre-training tasks.

5.6 | RQ5: Quality of adversarial examples

Questionnaire. The questionnaire for each volunteer consists of 20 sets of rating questions, each corresponding to an example tuple (original code

snippet + MHM perturbations + CBA perturbations). We guarantee that each tuple is at least evaluated by two different volunteers. There are

five rating questions for each example tuple. (1) Are the perturbations generated by MHM natural to the volunteer? That is, Will the volunteer

name the same or similar identifiers as the substitutions by MHM? (2) Similarly, are the perturbations produced by CBA natural? (3) Are the identi-

fiers substituted by MHM consistent with the context? In other words, are the textual meaning of the substituted identifiers appropriate in the

context of this very snippet? (4) Are the identifiers renamed by CBA consistent with the context? (5) Does CBA generate perturbations with

higher quality than MHM? The rating score ranges from �2 (not at all) to 2 (yes for sure), and 0 refers to neutral or “cannot decide.” After com-

pleting the questionnaire, we communicate with the volunteers about how their feeling about the perturbations generated by CBA along

with MHM.

Human evaluation. Table 12 lists the averaged rating scores from each volunteer (with pseudonym) and the overall results. Combining the

opinions from the four volunteers, MHM is not satisfactory from the perspective of naturalness and consistency, as the rating scores are negative

TABLE 10 Attack against CodeBERT pre-trained with MLM and RTD.

Adv.
OJ Atk. Succ (%) OJClone Atk. Succ (%)

Atk. MLMa +RTDb Δ (%)c MLMa +RTDb Δ (%)c

CBA 13.0 12.2 +6.2 18.1 15.6 +13.8

CBA-SA 15.1 14.3 +5.3 20.1 16.9 +15.9

aCodeBERT-MLM, pre-trained through MLM only.
bCodeBERT, pre-trained through MLM and RTD, where MLM is anadjunct to RTD.
cΔ¼1� RTD

MLM. Positive Δ suggests that RTD may help CodeBERT gain resilience against adversarial attack.

TABLE 11 Attack against CodeBERT-MLM and GraphCodeBERT.

Adv.
OJ Atk. Succ (%) OJClone Atk. Succ (%)

Atk. MLMa +DFb Δ (%)c MLMa +DFb Δ (%)c

CBA 13.0 7.2 +44.6 18.1 24.4 �34.8

CBA-SA 15.1 8.1 +46.4 20.1 25.5 �26.9

aCodeBERT-MLM, pre-trained through MLM only.
bGraphCodeBERT, pre-trained through MLM, node alignment and edge prediction (“DF” refers to “data flow”). The last two tasks make GraphCodeBERT

to capture the data flow information.
cΔ¼1� DF

MLM. Positive Δ suggests that data flow may help GraphCodeBERT gain resilience against adversarial attack.
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(about �0.9). However, the scores of CBA are both around 0.8, suggesting CBA produces much more natural and consistent perturbations than

MHM. Moreover, all volunteers consider CBA with higher quality compared with MHM, as the positive rating scores of the fifth question

indicate.

Besides the rating scores, Table 12 also presents the comments from the volunteers. The words sum up the volunteers' feeling about CBA

and MHM. In general, MHM produces complicated and bold substitutions, while identifiers generated by CBA are more in line with the habits of

human programmers and the distribution of programs in OJ. This is quite understandable, since MHM completely relies randomness without con-

sidering the context, while CBA leverages CodeBERT-MLM to generate substitutions according to the learned language distribution.

Answer to RQ5: Compared with MHM, from the perspective of human programmers, CBA generates more natural consistent adversar-

ial examples. The identifier substitutions produced by CBA are with rather high-quality.

6 | DISCUSSION

In this section, we discuss the extensibility of CBA, for example, languages other than C/C++ (Section 6.1) and perturbations other than identifier

substitution (Section 6.2), and threats to validity (Section 6.5).

6.1 | CBA for other languages

For more general application scope extension of CBA, we do not limit it to only C/C++ language. Instead, we process the source code with tree-

sitter,†† which is an open-sourced multilingual parsing tool. Tree-sitter allows CBA to switch to another programming language quickly, as we only

need to switch to another parsing-core for the corresponding language.

We also conduct a demonstrative experiment upon a self-constructed dataset based on Java-small62 for code defect prediction. We substi-

tute comparison operator in code to create defects (e.g., “<”)“<=”), forming a binary classification task. CBA and CBA-SA are capable of carrying

out adversarial attacks against CodeBERT in Java language (Table 13). Therefore, our proposed CBA is not limited to C/C++ but can be applied

to other languages.

6.2 | CBA for other types of perturbations

CBA can also be further extended to other types of semantic equivalent perturbations, such as white space insertion and comparison operand

swapping, etc. White space insertion (WS) is to insert spaces (“ ”), tabs (“ ∖ t”), and newlines (“ ∖ n”) into code. During our experiment, we find a

possible flaw of BPE, as white spaces create empty subtokens as “.” For example, “int a;” after BPE would be {“int,” “,”“,”“a,” “;”}, with two

empty subtokens. Multiple empty subtokens may cause difficulties for the victim model to understand the code properly. We adapt masked

TABLE 12 Human evaluation of adversarial examples generated by MHM and CBA.

Volunteer

Naturalness

(�2�2)
Consistency

(�2�2)
MHM (�2)

(pseudonym) MHM CBA MHM CBA vs. CBA (2) Comment

Jolyne �1.58 1.42 �1.26 1.53 1.63 “The substitutions by MHM are complex, redundant and

incoherent, while CBA is more natural and brief.”

Magent �1.79 0 �1.63 0.26 1.11 “MHM renames IDs like a beginner, while CBA produces more

proper names for general OI programs.”

Cioccolata 0.47 0.37 �0.58 �0.05 0.26 “MHM prefers bold or even aggressive substitutions, while CBA

performs normal or even mediocre ones.”

Q �0.79 1.58 �1.11 1.42 1.74 “Compared with CBA, IDs renamed by MHM are too complicated,

and do not conform the usual naming habits.”

Average �0.92 0.84 �0.93 0.79 1.19 -

ZHANG ET AL. 19 of 29

 20477481, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2571 by Peking U
niversity H

ealth, W
iley O

nline L
ibrary on [30/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



classification for WS by inserting masks into the code, searching for vulnerabilities. Then, we perform white space substitutions upon the vulnera-

ble positions, where the candidates consist of only white spaces. Comparison operand swapping (CMP) is to swap the operands of a comparison

statement. For example, “a>=b” after swapping would be “b<=a.” As for CMP, similarly, we mask the comparison expressions to perform masked

classification, looking for vulnerable comparisons. Then we directly swap the operands of the vulnerable expressions, forming the candidate set.

We conduct a set of illustrative experiments with CBA equipped with the aforementioned perturbations (Table 14). In OJ, the CodeBERT

models are capable of resisting the perturbations, as the success rates are lower than 5%, while in OJClone, all three models failed with attack

success rates over 20%. In addition, CodeBERT pre-trained with RTD can not enhance the robustness against these two types of

perturbations.

We would like to further discuss the adversarial perturbation for source code a bit more. Existing perturbations are usually fine-grained rule-

based transformations, such as identifier renaming,25,46,49,50 dead code insertion or deletion,46,50 and equivalent structure transformation (for ,
while).47 There are two major reasons why we do not consider in a large scale, for example, rewrite. (1) The adversarial perturbation cannot violate

the grammar. Existing techniques such as back-translation have the capability to rewrite the code, but they can hardly guarantee 100% correct-

ness. The high-level perturbation is still very challenging, and more in-depth progress of the field is required. (2) Apart from the correctness con-

straint, we also would like the perturbation to be imperceptible to human programmers. Therefore, the granularity of the perturbation is not

supposed to be too large.

6.3 | Adversarial pre-training

Adversarial pre-training incorporates adversarial perturbation into the pre-training process, hoping to gain resilience and pass such resilience to

the fine-tuned model against adversarial attack. Compared with traditional adversarial training, there are two major advantages of adversarial pre-

training. (1) Adversarial pre-training integrates adversary during the pre-training stage, avoiding burdening the downstream task practitioners. Ide-

ally, the downstream practitioner needs only focuses on the downstream task itself, and the fine-tuned model (without additional adversarial

training) is capable to resist adversarial attack. It can be friendly and efficient for the downstream task practitioners. (2) During the pre-training

stage, the corpus is extremely large. Therefore, multiple perturbations or even a universal perturbation can be involved during adversarial pre-

training. It is rather hard and resource-consuming to achieve so in the downstream tasks. So far, a plausible research direction is through contras-

tive learning,63 where the representation of the positive pair (similar or even the same samples) gets closer, while the distance of the negative one

is increased. Please refer to the survey of adversarial pre-training for more comprehensive introduction.61

In this paper, we attempt to verify the idea of adversarial pre-training in the context of source code processing. CodeBERT provides a

perfect prototype experiment. The MLM model (CodeBERT-MLM) provides token substitution as perturbation, and the RTD model

(CodeBERT) tries to identify such substitution, creating a natural scenario of adversarial pre-training. Our experimental results indicates that

without additional adversarial training, the fine-tuned CodeBERT inherits the resilience against identifier renaming from the RTD pre-training

task. Adversarial pre-training is a new research direction, and we will try to design a universal perturbation for adversarial pre-training in

our future work.

TABLE 13 Attack against CodeBERT for code defect prediction in Java.

Victim None
CBA CBA-SA

mode Acc (%) Succ (%) Acc (%) Succ (%) Acc (%)

CodeBERT 93.1 17.8 75.1 19.7 73.3

TABLE 14 Attack success rate (%) with different types of perturbations.

Task Perturb. Adv. Atk. LSTM CB-MLM CB

OJ WS CBA 24.0 3.8 4.5

CBA-SA 23.6 4.0 4.4

CMP CBA 9.9 1.3 1.4

CBA-SA 10.2 1.4 1.5

OJClone WS CBA 21.2 22.3 25.7

CBA-SA 21.3 22.1 25.9
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6.4 | Exact black-box attack

In this paper, as a rather early investigation about adversary of code model, we make a relatively broad categorization of the scenario—white-box

(the internal states of the DL model, such as parameters and gradients, are available) and black-box (the internal states are not accessible). But in

other field, the black-box scenario is further divided into gray-box and exact black-box64—the gray-box setting allows access to the prediction

probability of the victim model, while the exact black-box setting only makes the discrete prediction available. At a rather early stage, following

the previous MHM, we do not constrain victim model output to be discrete classification. As our future work, we may try to tackle the more chal-

lenging exact black-box attack against source code processing models.

It is possible that we may leverage CBA to produce adversarial perturbation in the exact black-box scenario, but it is almost predictably not

ideally effective or efficient. As aforementioned, we may regard the exact black-box scenario as a special case of gray-box. The discrete classifica-

tion can be considered as a one-hot probability distribution, that is, the probability of the predicted class is 1 and others 0. Therefore, it is plausible

to migrate CBA to exact black-box attack but with great challenges. (1) During vulnerability detection, CBA still employs masked classification to

compute the vulnerability score. But without accessing the prediction probability, the vulnerability manifests only when the predicted class

changes, resulting a very small or even empty subset of the vulnerabilities. (2) In the candidate generation and probing phase, the hill-climbing sea-

rch will almost fail, as the searching surface becomes a platform (probability 1) with only a few holes (probability 0). The probability changes only

when it falls like a staircase from 1 to 0. Thence, the exact black-box setting is very challenging to CBA, and we will try to tackle this new problem

in the future.

6.5 | Threat to validity

Threat to external validity. The quality of our subject tasks and the representative of the victim models are major threats to external validity.

(1) The subject code classification (OJ) and clone detection (OJClone) tasks have been studied in previous work of adversarial attack against

source code models.25 The two datasets are also included in the widely accepted CodeXGLUE benchmark.23 Besides OJ and OJClone (both C/C+

+ language), we also extend to a manually crafted defect prediction task in Java to demonstrate the capability of CBA. However, further studies

upon other tasks and programming languages are still required to further generalize our findings. (2) The studied subject (victim) LSTM and

CodeBERT models are popular architectures in the field of source code processing. LSTM is one of the most classic and popular architecture, and

it is the backbone of many state-of-the-art models.2,8,13 CodeBERT, employing the transformer architecture, is a widely adopted and studied pre-

trained model for source code.20,21,23 From the perspective of architecture, our victim selection covers the recurrent sequential model (LSTM)

and the transformer (CodeBERT); from the perspective of learning, the victim selection covers the end-to-end “from scratch” paradigm (LSTM)

and the “pre-training and fine-tuning” paradigm (CodeBERT). However, to further facilitate generalizability of our conclusion, other architecture

need to be evaluated.

Threat to internal validity. The hyper-parameter selection of both CBA and MHM is a threat to internal validity. Besides, the type of adver-

sarial perturbation can be a threat too. (1) The iteration budget is set to 20, which may affect the convergence of the adversarial attack

approaches. As shown in Figure 3, CBA converges in the given iteration budget. However, due to the limitation of computational resource, the

vulnerable size, that is, nvul¼5, and the candidate set size, that is, ncand¼10, are rather small. To find the best hyper-parameter combination and

to achieve the best performance of CBA, a grid searching over nvul, ninter , and ncand is required. (2) For a fair comparison with CBA, we limit the can-

didate size of MHM to 10, which may cause the MHM baseline to perform poorly. To counter this threat, we carry an experiment, where the can-

didate size of MHM is even enlarged to 50 (Figure 3A). The comparison justifies the capability of CBA. (3) CBA performs identifier renaming

perturbations upon source code, which may not be general. Other types of perturbations are possible to reach different conclusions. Therefore,

we extend CBA to other types of code perturbations in Section 6.2. Further extension of CBA is required to examine the general robustness of

the models.

Threat to construct validity. The evaluation metrics of both the victim models and the adversarial attack approaches can be threats to con-

struct validity. (1) Accuracy and F1-score are employed as the performance indicators for OJ and OJClone, respectively. They are classic evalua-

tion measurements and are adopted in the previous work.2,3,25 (2) We employ attack success rate and performance decreasing of the victim

model as the performance indicators of the adversarial attack approaches. Both indicators have been adopted in the previous work of adversarial

attack against source code model—attack success rate from MHM25 and performance decreasing from DAMP.46

7 | CONCLUSION

This paper proposes CBA, a black-box identifier substitution adversarial attack approach equipped with a large pre-trained CodeBERT model, for

the context of source code processing. Our in-depth evaluation confirms the effectiveness and efficiency of CBA. Inspired by the idea of “turning
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CodeBERT against CodeBERT,” we further conduct adversarial attacks against CodeBERT models, demonstrating the robustness gaining of

CodeBERT through pre-training.
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The data that support the findings of this study are openly available in CodeBERT-Attack at https://gitfront.io/r/DrLC5417/5pBsYXgKinB3/
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ENDNOTES

* https://visualstudio.microsoft.com/services/intellicode/
† https://github.com/microsoft/CodeXGLUE.
‡ https://gitfront.io/r/DrLC5417/5pBsYXgKinB3/CodeBERT-Attack/.
§ https://huggingface.co/microsoft/codebert-base.
¶ https://huggingface.co/microsoft/codebert-base-mlm.
# https://huggingface.co/microsoft/graphcodebert-base.
k https://github.com/huggingface/transformers.

** We strictly follow the guidance of CodeXGLUE. The authors of CodeXGLUE23 have also confirmed this phenomenon. Therefore, such bias is not likely

to be caused by our experimental procedure.
†† https://github.com/tree-sitter/tree-sitter.
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APPENDIX A: ADVERSARIAL EXAMPLE

We present more OJ cases of adversarial examples generated by MHM and CBA against LSTM in Table A1. These cases are randomly sampled

from the 38 examples for human evaluation, without any cherry-picking. MHM in most cases does not consider the textual and contextual infor-

mation of the original identifier, and randomly substitutes it with a completely unrelated one, for example, “len” ! “month_day_sum.” On the

other hand, CBA may be much more natural and consistent, since it mainly performs substitutions such as “m”! “n” and “i”! “index.”
We also list some randomly sampled OJ cases of attacks against CodeBERT-MLM in Table A2, following the same filtering and sampling pro-

cedure. Similar findings as above can be found in attacks against CodeBERT-MLM.

We hope these cases may give the readers some intuition about the quality of CBA, compared with MHM.
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TABLE A1 Examples of adversarial perturbations against LSTM in OJ.

Original code MHM CBA

n! xueke n! j

a! jinzhi2 n! N

i! m

i! wn i! index

x! NumberOfJump x! w

(Continues)
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TABLE A1 (Continued)

Original code MHM CBA

n! left_num n! m

w! index1_tail w! sw

i! whatmark i! l

len! month_day_sum len! count
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TABLE A1 (Continued)

Original code MHM CBA

strl! getnum i! my

n! q_head n! j
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TABLE A2 Examples of adversarial perturbations against CodeBERT-MLM in OJ.

Original code MHM CBA

m! shuzunan a! af

c! EVEN c! j

i! means i! start

input! flag

i! liezuixiao str! tw

28 of 29 ZHANG ET AL.

 20477481, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

r.2571 by Peking U
niversity H

ealth, W
iley O

nline L
ibrary on [30/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE A2 (Continued)

Original code MHM CBA

a! ENDyear a! ch

i! ke

j! i

ch! peo2 ch! ah

flag! tag
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